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quantifies the economic cost of the regulation, the contribution of multi-unit firms to
leakage across regions and the role of the Clean Air Act in redistributing industrial pro-
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1 Introduction

A central question in studies of regulation is the degree to which economic activity that is

subject to regulation is shifted to unregulated domains. The potential for such leakage is

particularly important for policies that target establishments based on size or location, or

when regulations only impact a subset of plants within a firm. Analyses that do not account

for leakage are likely to lead to biased estimates of the economic effects of important policies

and will misrepresent their distributional consequences.

This paper studies the direct and leakage effects of regulations in the context of a land-

mark piece of environmental legislation: the Clean Air Act. The policy restricts manu-

facturing activity in counties that exceed the National Ambient Air Quality Standard, a

federal pollution standard that aims to protect human health. Four main challenges have

prevented prior studies from providing a comprehensive analysis of the direct and indirect

effects of environmental regulation. First, the presence of leakage inherently complicates the

estimation of treatment effects.1 Second, command and control regulations often limit or

disincentivize investment, but do not target existing operations. As such it is important to

measure the effects of the policy over longer periods of time that capture firms’ entry and

exit decisions. Third, to properly measure leakage effects, it is crucial to contend with the

fact that a significant fraction of industrial output occurs in plants that are part of multi-

unit firms and may therefore more easily be able to shift production to unregulated regions.

Finally, studies of leakage typically have to contend with omitted variable bias because dif-

ferences in environmental regulation are often correlated with many other characteristics of

regulated jurisdictions. Such endogeneity may swamp any reallocation effects, with possible

conclusion that environmental regulation is not an important driver of industry location

(Copeland, Shapiro, and Taylor, 2022).

In this paper, we overcome these challenges by combining new empirical evidence with

an industry equilibrium model that features intra-national trade and multi-unit production.

We first use confidential plant- and firm-level data from the US Census Bureau to provide

new empirical evidence of how plants and firms responded to the Clean Air Act. To capture

1Indeed, the first generation of papers studying the effects of the Clean Air Act did not directly address
leakage effects (e.g., Becker and Henderson, 2000; Greenstone, 2002).
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important long-run adjustments, such as plant exit and reallocation of activity within firms,

we provide new event-study analyses that capture plant and firms responses to the policy over

a 20 year period. By linking regulated plants to unregulated sister plants in the same firm, our

analyses capture the potential for within-firm leakage, a critical margin given that multi-unit

firms were responsible for 80% of the output of regulated industries in this period (Dunne,

Roberts, and Samuelson, 1988). Using event-studies, we find that, relative to unregulated

plants, those in areas subject to the regulation see declines in employment and sales of 26%

and 30%, respectively, over a 20 year period. We also show that a significant fraction of these

changes are driven by extensive margin responses, highlighting the importance of analyses

incorporating entry and exit decisions. We also show that multi-unit firms respond to the

policy by increasing their economic activity in plants that are not subject to the regulation.

To complement these new plant- and firm-level results, we provide new estimates of the direct

and geographic leakage effects at the county-level. These results show that, over a 20 year

period, employment in regulated areas decreased by 25.2%, relative to non-regulated areas.

However, areas that were geographically closer to highly regulated regions saw employment

increases.

While these new empirical results provide evidence of reallocation of economic activity,

they capture both changes in treated and control units. To separately capture the direct and

indirect effects of the policy and quantify aggregate impact, we build an industry equilibrium

model that quantifies geographic leakage through intra-national trade as well as through the

ownership networks of multi-plant firms. Once we quantify our model, we find that the

regulation led to changes in economic activity in both regulated and non-regulated areas.

A decomposition of the differences-in-differences estimates implied by the model shows that

55% of the overall estimates are driven by declines in economic activity in regulated areas,

with the rest being due to increases in the economic activity of non-regulated areas. We

discuss the importance of within firm substitution in generating these effects, as well as

implications for changing regional specialization patterns. Finally, the model allows us to

quantify an average consumption cost of the regulation of 1.3%.

We develop these results in two steps. We first use data from the Census of Manufactures

and an event-study methodology to revisit seminal estimates of the effects of the Clean Air

2



Act on regulated plants. Relative to unregulated plants, plants in areas subject to the

regulation experience a 30% decline in plant output over 20 years. We find similar declines

in other measures of economic activity, such as employment and energy use, and we show

that plant exit among large plants is a key driver of these results.

To measure within-firm leakage, we then compare regulated firms that differ in their

exposure to the regulation, as measured by the share of pre-regulation employment that is

subject to the regulation. Relative to firms with low exposure, those with larger exposure

see increases in the output of their unregulated sister plants.

We complement our evidence of within-firm reallocation with new estimates of the ge-

ographic leakage effects of the regulation using publicly-available data from the County

Business Patterns (Eckert et al., 2020). To measure county-level indirect exposure, we cal-

culate how much regulated employment each county is surrounded by, weighting surrounding

counties inversely according to geographic distance (Adao, Arkolakis, and Esposito, 2019).

Our most conservative estimates imply that counties at the 75th percentile of the exposure

distribution see a 3% increase in employment relative to counties at the 25th percentile.2

In a second step, we build an industry equilibrium model that includes detailed geographic

patterns at the commuting zone level, along with multi-plant production and intra-national

trade. The model guides our interpretation of empirical difference-in-difference estimates

and evaluates the aggregate output loss attributable to the Clean Air Act. Through the lens

of our calibrated model, rationalizing the relative employment decline in regulated areas

requires a 5% decline in productivity in regulated locations, comparable to the regulation-

induced productivity decline estimated in Greenstone, List, and Syverson (2012). To provide

evidence for the fit of our model, we show that it matches the estimated leakage as untar-

geted moments. While our simple model without ex-ante productivity differences somewhat

understates the estimated geographic leakage, it performs remarkably well in matching the

within firm leakage for standard values of the within firm elasticity of substitution (Tintelnot,

2017; Head and Mayer, 2019).

Using the model, we disentangle the direct effects captured by the difference-in-difference

2Lower values of spatial decay, such as those in line with estimates from the gravity literature, imply
larger effects.
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coefficients into the actual impacts on regulated areas and the leakage effects on unregulated

ones. Approximately half of the observed reduction in employment in regulated areas, com-

pared to unregulated areas, is attributable to leakage effects on the unregulated locations.

Reallocation within multi-unit firms is crucial for these effects. A model that treats plants

as stand-alone predicts a roughly 40% lower increase in activity in the regulated area. These

reallocation effects then feed into changes in regional specialization, in line with aggregate

trends on manufacturing activity becoming less spatially concentrated between 1967-1987.

Thus, environmental regulation are a clear determinant of comparative advantage, a pattern

that has remained elusive in cross-country data.

The rest of the paper is organized as follows. Section 2 places our results in the con-

text of the literature. Section 3 provides institutional background on the Clean Air Act

Amendments. Section 4 develops an industry equilibrium model with intra-national trade

and multi-unit firm production that motivates the challenges of interpreting difference-in-

differences estimates in spatial equilibrium. Section 5 and Section 6 describe our data and

empirical results. Section 7 implements the quantitative model, Section 8 uses the model

to evaluate the direct, indirect, and aggregate effects of the Clean Air Act, and Section 9

concludes.

2 Related Literature

To set the stage, we revisit seminal papers in the literature on the economic effects of the 1970

Clean Air Act such as Greenstone (2002) and Becker and Henderson (2000).3 Consistent

with the findings in this literature, we estimate that violations of the pollution standard

increase exit rates, particularly among very large establishments, and trigger declines in sales,

employment and energy use. We make two contributions to this literature. First, we provide

new evidence on the long-run effects of the policy. Clean Air Act (CAA) regulations may

not immediately require incumbents to downsize, either because of grandfathering or modest

cost of required control equipment. Over time, some of the provisions of the CAA become

more binding and put regulated plants at a long-run disadvantage relative to unregulated

3Similar to these studies, our paper only focuses on the manufacturing sector. Clay et al. (2021) study
the effects 1970s nonattainment on electricity producers.
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plants. One such provision is the New Source Review that severely limits plants in their

ability to carry out major expansions. Our event study methodology allows us to capture

these long-run responses, and supports the hypothesis that the negative effects of regulation

accumulate over time.4 Taken at face value, the relative employment declines in polluting

industries imply a job loss of more than 200 thousand, around four times larger than implied

by Greenstone (2002) estimates for particulate matter regulation.5 Second, we empirically

test for leakage within firms and across counties triggered by the policy.

Our findings of within firm leakage complement recent work that studies these leakage

in response to environmental policy (Cui et al., 2023; Gibson, 2019; Hanna, 2010), weather

shocks (Castro-Vincenzi, 2023; Acharya, Bhardwaj, and Tomunen, 2023) and local produc-

tivity improvements (Giroud et al., 2021). An important take-away from our results is that

this process of reallocation may take a long time to unfold. Thus, we caution against using

short panels if the goal is to estimate the full extent of within firm reallocation. Relative

to these papers, we also present evidence for gravity-based leakage to nearby unregulated

counties. Spatial leakage within the US may be an important consideration for designing

and evaluating environmental policies that differ across states (Fowlie, 2009).

Accounting for these leakage is central for estimating the aggregate effects of the policy.

A large literature uses quantitative general equilibrium models to assess positive and nor-

mative aspects of environmental policy (Golosov et al., 2014; Hafstead and Williams, 2018;

Shapiro and Walker, 2018; Campolmi et al., 2024). Papers in this literature typically study

environmental policy at the national level, while we evaluate the distortions that arise in

spatial equilibrium, similar to the study of state tax differences by Fajgelbaum et al. (2019).

We explicitly discipline our model with credible reduced form estimates of the micro effects

of environmental policy. Closely related to our quantitative analysis, Hollingsworth et al.

(2022) also study the effects of the Clean Air Act in spatial equilibrium. Their paper high-

lights the importance of pollution transport for estimating the aggregate benefits of reduced

pollution in nonattainment counties.6 Relative to their work, we provide a detailed empirical

4Walker (2013) analyzes important long-run labour market outcomes among workers employed by regu-
lated plants.

5These differences arise because Greenstone’s difference in difference estimates also reflect substantially
smaller short-run effects, as well as his assumption that counties are no longer regulated.

6Hollingsworth et al. (2022) emphasize that unregulated counties can benefit from regulation through
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assessment of economic leakage and interpret the empirical results within a spatial equilib-

rium model of multi-unit firm production. Our paper is also related to empirical work on

the pollution haven hypothesis as surveyed in Copeland, Shapiro, and Taylor (2022). While

the evidence in that literature is mixed, our study of intra-national relocation overcomes

endogeneity issues that arise in cross-country studies. Since production is likely more mobile

within than across countries, our estimates may provide a credible upper bound on pollution

haven effects.

3 Institutional Setting

In this section, we provide institutional details behind the environmental regulation that

forms the basis of our identification strategy and modeling approach.

3.1 Clean Air Act

The Clean Air Act was the first federal legislation regulating emissions of air pollutants in

the United States. While it has undergone changes since its passage, the framework that

was put in place by Congress in the 1970’s remains intact today.7 Following the Earth Day

Demonstrations in April of 1970, Congress moved quickly to pass federal, enforceable regula-

tions of air emissions. The 1970 Clean Air Act Amendments established the Environmental

Protection Agency (EPA) and granted them considerable authority to regulate emissions

across stationary and non-stationary sources. The backbone of the 1970 CAAA, was the

creation of the National Ambient Air Quality Standards (NAAQS). The law gave the EPA

authority to set air quality standards for pollutants considered harmful to public health and

the environment. The NAAQS set pollution thresholds for key “criteria” air pollutants and

regions of the country with pollution levels above these thresholds were designated as “nonat-

tainment.” Regions of the country whose pollution levels were below the threshold would be

designated as in attainment. The 1970 CAAA required States to design and enforce State

reduced pollution transport. We empirically estimate no pollution leakage to unregulated counties, consistent
with economic reallocation offsetting the effects of reduced transport.

7The original Clean Air Act passed in 1963, but contained only broad, non-specific goals and no enforce-
ment mechanisms. As a result, between 1963 and 1970, the act was viewed as toothless and “a complete
failure” (Melnick, 1983).
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Implementation Plans (SIPs) by 1972 that would reduce emissions in nonattainment regions

and bring these regions’ pollution levels into compliance with the new federally imposed air

quality standards. In practice, most states calculated the total estimated emissions from all

stationary sources within each nonattainment area and then divided this figure by an esti-

mate of the maximum emissions level that would allow to achieve attainment status. Plants

were then mandated to cut emissions in accordance with this ratio (Roberts and Farrell,

1978).

While states had some leeway to regulate emitters, the EPA and the 1977 CAAA for-

malized a set of rules which required polluting establishments in nonattainment regions to

comply with more stringent regulations than those in attainment regions. In particular, in

order for a plant to receive an operating permit in a nonattainment region, it had to achieve

the Lowest Available Emissions Rate (LAER). This provision of the CAAA required them to

install capital that ensured they would achieve the emissions rate of the cleanest plant in the

industry. Importantly, this standard had to be implemented irrespective of cost, requiring

firms to make expensive upgrades to their facilities. Additionally, as part of the Nonattain-

ment New Source Review, new and modified sources in nonattainment regions were required

to obtain offsets from other local emitters before any expansion or modification would be

allowed (Shapiro and Walker, 2023). Finally, being located in a nonattainment region meant

that plants were now subject to scrutiny from regulators and the public. Facilities wishing

to modify or grow were required to undergo an extended period of public and regulatory in-

put. Polluting establishments in attainment regions and particularly those without emissions

monitors, received far less scrutiny from regulators.

More lax rules were put in place for plants in attainment counties. “Major Sources” in

attainment regions were subject to the less stringent Prevention of Significant Deterioration

(PSD) requirements which took costs and economic growth into consideration and did not

require public input for new and modified sources. However, even the definition of a major

source varied by attainment status. Generally, plants in nonattainment regions were defined

as major source emitters if they produced more than 100 tons per year of a pollutant. Plants

in attainment counties could pollute up to 250 tons per year before being classified as a major

source.
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Together, the introduction of the 1970, 1977 Clean Air Act Amendments, and the es-

tablishment of nonattainment standards, marked a significant turning point for industrial

polluters, imposing stringent regulatory measures that were unprecedented at the time.

3.2 Details of Treatment Designation

The geographic variation we exploit in our analysis is derived from the differential change

in regulatory stringency between plants in attainment and nonattainment regions follow-

ing the passage of the 1970 CAAA. Upon its passage, the EPA collected air quality data

from pollution monitors around the country to determine which regions would be designated

as nonattainment for the criteria air pollutants. By the beginning of 1972, the EPA had

developed a designation. The EPA did not publish records of county nonattainment desig-

nation until 1978. As a result, researchers use monitor data from the early 1970’s together

with the published pollution thresholds to impute which counties were originally placed into

nonattainment (see Sanders and Stoecker (2015) and Isen, Rossin-Slater, and Walker (2017)

among others). Researchers have differed in the details of imputation, but recent work has

focused on attainment status of Total Suspend Particulates, for which the monitor network

is most complete in the early 1970’s when attainment status was first being determined

(Cropper et al., 2023; Isen, Rossin-Slater, and Walker, 2017; Sanders and Stoecker, 2015).8

As a result, our main analysis defines a county as treated if it is designated as nonattainment

for at least TSP. When using available data for monitors of other pollutants we find that,

unsurprisingly, nonattainment status is highly correlated across pollutants. We identify only

25 counties which fall above the threshold for a non-TSP pollutant and would be defined as

in attainment for TSP.9 From these readings, 274 counties whose 1971/1972 monitor data

exceeded the CAAA’s Total Suspended Particulates threshold are defined as treated.10

We take these regulatory designations as fixed for the period 1972 to 1987. An alternative

8In 1972, TSP monitors covered 1,059 counties, relative to 508 for SO2, 156 for O3 and 137 for CO.
9To create a clean control group we drop plants in these 25 counties from our sample. Given Census

disclosure rules we currently do not release results for other treatment definitions but we are able to perform
a number of robustness checks with other treatment definitions using publicly available County Business
Patterns data.

10A second reason to focus on TSP, apart from the sparse monitor data of other pollutants, is that the CAA
officially targeted larger Air Quality Control Regions (AQCR) in the early 1970s (Murphy, 2017; Cropper
et al., 2023). For TSP, it is plausible that regulators focused on the most polluted counties within AQCRs
since TSP pollution remains highly concentrated around its source (Auffhammer, Bento, and Lowe, 2009).
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considered in Greenstone (2002) is to assume plants are no longer regulated once the county

achieves the primary standard. One advantage of taking regulatory designations as fixed is

that it allows us to estimate the dynamic effects of nonattainment. Long-run effects may

be important because some aspects of the regulation such as the New Source Review can

affect firms even if they are no longer directly targeted by regulators. If firms stop investing

while regulated, the effect on output may remain visible even if the county has fallen back

into attainment. An additional consideration is that regulatory differences may in fact be

permanent. Even if pollution readings fall below the initial threshold, a county can still be

in violation for NAAQS standards which were lowered in subsequent years. The thresholds

used to determine attainment status have been revised and lowered almost every five years.

Plants in initially more polluted nonattainment areas may expect future tightening of the

NAAQS to fall on them and thus not dramatically change their behavior.

Following Greenstone (2002) and Greenstone, List, and Syverson (2012), our baseline

results analyze industries that are deemed as heavy polluters. We provide additional details

of the selected industries in Section 5.

4 Modeling Environmental Regulations with

Intra-National Trade and Multi-Unit Firms

This section describes a quantitative model that features multi-unit firms operating in dif-

ferent geographical regions that may or may not be subject to the regulation. Each plant

may serve a broad range of geographical markets. Firms may respond to the regulation

by changing the scale of operations in existing plants and by opening or closing plants in

different regions.

The model highlights the importance of interpreting empirical analysis taking into ac-

count within-firm and trade-based market leakage. As with prior work, we will evaluate

the effects of NAAQS by comparing firm outcomes across attainment and nonattainment

regions. Instead of assuming a lack of leakage, our model characterizes these leakage and

allows us to quantify the effects of the regulation on both attainment and nonattainment

areas.
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4.1 Theoretical Motivation

We begin by building intuition in a simple two region model with multi-plant production.

This simple case shows that, in spatial equilibrium, comparisons between firm outcomes

across attainment and nonattainment regions do not only capture the direct effect on regu-

lated firms. This is because firms in attainment areas benefit from an increase in competi-

tiveness. In addition, local market outcomes, such as production and employment, depend

on equilibrium prices in both attainment and nonattainment areas. Within attainment re-

gions, the model predicts an increase in employment and sales among unregulated plants

exposed to the regulation through a regulated sister plant. This intrafirm leakage effect

arises whenever the elasticity of substitution across plants within firms θ is greater than the

elasticity of substitution across firms η − 1. Proofs of the results are in Appendix C.

Set-up. There are two ex-ante symmetric locations. Each location j has a unit mass of

potential entrants j with firm productivity ϕj ∼ Gj. To become active, a potential entrant

has to pay a fixed cost f̄0.

Upon entry, firms produce a unique variety using labor. We focus on the product market

equilibrium and fix the wage wj = 1 in both locations. To serve the foreign market, firms

can trade to the other location and incur a constant iceberg trade cost τ > 1. There is no

additional fixed cost of exporting. Firms can also decide to open a plant in the other location

at fixed cost f̄1.

Following Tintelnot (2017), we assume that sales are comprised of a unit mass of ship-

ments. Each plant receives a continuum of cost draws from Frechet distribution with a region

specific location parameter Tj and common scale θ. The firm chooses the lowest cost plant

for each shipment. For a single plant firm located in j, marginal cost of serving market j are

equal to

c
SUj

j = Γ

(
θ + 1

θ

)
︸ ︷︷ ︸

Γθ

wj

Tjϕ

and cSUj′ = τcSUj . For a multi-unit firm, marginal cost of serving market j are equal to

cMU
j (ϕ) =

Γθ

ϕ

((
wj

Tj

)−θ

+

(
wj′τ

Tj′

)−θ
)− 1

θ

.
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In a symmetric baseline equilibrium with
wj

Tj
=

wj′

Tj′
we have

cSUj (ϕ)

cMU
j (ϕ)

=
1

(1 + τ−θ)−
1
θ

> 1

i.e. the MU firm achieves lower marginal cost by exploiting comparative advantage within

the firm.11

Combined with the presence of fixed costs of entry and MU production, the model pro-

duces intuitive sorting. Let ϕ̄j be the productivity of a firm indifferent between entry and

exit and ¯̄ϕj the productivity of a firm indifferent between trade and multi-unit production.

Given CES-monopolistic competition, this set-up implies: ϕ̄j <
¯̄ϕj.

Effects of Environmental Regulation. We model nonattainment as a negative,

location-specific productivity shock d lnTj < 0 to an ex-ante symmetric industry equilib-

rium.12 Productivity in the attainment region j′ is unaffected. The following results charac-

terize the effects of this shock to a first-order approximation.

Result 1. The effect of regulation on revenue r and labor demand l of single and multi-

unit plants active in j are given by

d log rSUj = d log lSUj = (η − 1)

(
1

1 + τ 1−η
d logPj +

τ 1−η

1 + τ 1−η
d logPj′

)
+ (η − 1)d log Tj

d log rMU
j = d log lMU

j = (η − 1)

(
1

1 + τ−θ
d logPj +

τ−θ

1 + τ−θ
d logPj′

)
+ [τ̃(η − 1) + (1− τ̃)θ]︸ ︷︷ ︸

>0

d log Tj

where τ̃ =

((
τ−θ

1+τ−θ

)2
+
(

1
1+τ−θ

)2)
< 1.

This result shows that the direct effect of regulation induced decline in productivity -

holding prices fixed - is a decline in plant sales and employment.13 For single-unit plants,

the direct effect is proportional to the cross-firm elasticity of substitution. For multi-unit

plants, it depends on a convex combination of the within and across firm elasticity. The

11We provide a more detailed derivation of these cost functions in Section 7.1.
12This equilibrium is defined by a pair of ideal price indices Pj and Pj′ that are consistent with optimal

location and production choices of firms in j and j′.
13With labor as the only input factor and CES-monopolistic competition, labor and sales differ only up

to a constant.
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fractions involving trade costs τ are exposure shares corresponding to the share of plant

revenue stemming from sales in j and j′, respectively.

Result 2. The effect of regulation on revenue and labor demand of plants in the unreg-

ulated region j′ is given by

d log rSUj′ = d log lSUj′ = (η − 1)

(
τ 1−η

1 + τ 1−η
d logPj +

1

1 + τ 1−η
d logPj′

)

d log rMU
j′ = d log lMU

j′ = (η − 1)

(
τ−θ

1 + τ−θ
d logPj +

1

1 + τ−θ
d logPj′

)
+ (η − 1− θ)

2τ−θ

(1 + τ−θ)2
d log Tj.

Single unit plants in j′ are only affected by the regulation through the effects of the

regulation on the price indices Pj and Pj′ . For multi-unit plants, there is an additional

direct effect. Whenever η− 1 < θ, regulation in j leads to an increase in production of firms

in j′. MU firms use their plant in j′ to satisfy demand previously met through shipments

from the plant in j. This effect is especially pronounced when trade costs τ are small, i.e.

when regulated and unregulated plants co-locate geographically.

Characterizing the full effect of regulation within this model requires us to determine the

effect on prices. The first step in this analysis is to establish the effects of regulation on

entry and exit.

Result 3: The effects of nonattainment on entry and location choice are equal in mag-

nitude and opposite in sign:

d ln ϕ̄j = −d ln ϕ̄j′ > 0 and d ln ¯̄ϕj = −d ln ¯̄ϕj′ < 0.

After the regulation, firms exit the nonattainment region, i.e., the productivity threshold for

entry increases: d ln ϕ̄j > 0. However, this effect is offset by entry into the attainment region,

where the entry threshold decreases by an equal amount. The entry effect arises because the

attainment region gains in relative competitiveness. Additionally, firms head-quartered in j

are more likely to open a second plant if θ > η − 1, i.e., the productivity threshold defining

MU status decreases: d ln ¯̄ϕj < 0. The restriction θ > η − 1 guarantees that the profits of

single-unit firms are more negatively affected by a productivity decline than those of multi-
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unit firms.14 At the same time, exporting becomes more attractive for firms headquartered

in j′, where the multi-unit threshold increases. Given the assumption of symmetry across

locations, these results also imply that the overall number of active firms remains constant.

Nonetheless, as the following result shows, the effects of the regulation on location choices

amplifies the overall effect of the regulation on the price index in the regulated area Pj.

Result 4. The effect of nonattainment on the price index is given by

d lnPj = −Λ× d lnTj and d lnPj′ = −(1− Λ)d lnTj,

where Λ > (1− STrade) >
1
2
is a function of model parameters.

In a setting without entry and location choices, the first-order effect of a negative produc-

tivity shock on Pj is given by share of consumption that was initially produced in j, which

we denote by 1− STrade. Entry and exit decisions amplify this effect because the number of

firms producing in j falls. The offsetting entry in j′ is less valuable for consumers in j who

are separated from these firms by trade frictions. Prices in location j′ also increase whenever

Λ < 1. This holds when the market share of marginal firms is sufficiently small so that the

price index is not too elastic with respect to the behavior of these firms.

Result 5. Suppose Λ < 1. Then a difference-in-difference comparison overstates the

effects of nonattainment on local labor demand:

|d lnLj| < |d lnLj − d lnLj′|.

The response of local labor demand d lnLj reflects the direct effect of the negative pro-

ductivity shock on surviving firms and exit, partially offset by the increase in the price index

in j. A similar equilibrium adjustment leads to entry in the unregulated location j′. Ad-

ditionally, the within firm shift in economic activity raises labor demand among plants in

multi-unit firms. Together, these effects imply an increase in labor demand d lnLj′ > 0.

Thus, the comparison to an unregulated location identifies the relative effect of the regula-

tion on labor demand, but overstates the employment loss in the regulated area because the

increase in relative prices is smaller than the increase in prices in the nonattainment area,

double counting of entry and exit effects and within firm relocation.

14Whenever θ > η − 1, sales are more substitutable within the firm, so firms can partially evade the
productivity loss of regulation by selecting into multi-unit production.
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With knowledge of model parameters, such as Λ and the price elasticity of product

demand, it is possible to use this simple model to decompose differences-in-differences esti-

mates into the effects on attainment and nonattainment areas (see Appendix C). While this

model delivers useful insights, the mapping between model parameters and reduced-form ef-

fects depends on an unrealistic assumption of symmetry, misses important differences in the

economic geography of the US, and does not account for how the policy targeted different

locations.

5 Sources of US Manufacturing Data

This section describes the main data sources we use in our empirical analyses of the 1970’s

CAAA on plant-, firm- and county-level outcomes.

Plant-level data. The primary dataset we rely on is the Census of Manufactures (CM).

The CM is a census of all US manufacturing establishments in the United States. The

first year available to researchers is 1963. Starting in 1967, Census began performing the

survey quinquennially in years ending in 2 and 7. Our baseline sample period consists of all

CM years from 1963 to 1987. The CM provides plant-level data on the baseline measures of

output (sales) and inputs (labor, energy) that we report. To track plants and firms across the

years covered in our study, we employ the Longitudinal Business Database (LBD). The LBD

has been carefully constructed by Census to ensure consistency across years for both plant

and firm identifiers (Chow et al., 2021). The consistent identifiers allow us to observe when

plants shut down. The firm identifier allows us to identify all plants owned by a common

firm which allows us to calculate firm-level measures of our key variables and identify within

firm reallocation across plants and geography.

We focus on the industries Greenstone (2002) labels as major emitters of Total Suspended

Particulates. The industry groups are “Lumber and Wood Products”, “Pulp and Paper”,

“Stone, Clay, Glass, and Concrete” and “Iron and Steel”.15 Becker and Henderson (2000),

Greenstone (2002) and Greenstone, List, and Syverson (2012) argue that regulators target

15For our plant-level estimates, our sample consists only of plants in exactly the industries listed as major
emitters of TSP in Table A2 in Greenstone (2002). At the county-level, our definition of major emitter is
slightly broader in that we include all 3-digit industries that fall in those industry groups, some of which
Greenstone excludes.
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these pollution-intensive industries to bring counties back into attainment. To estimate the

effects of the regulation across all manufacturing industries, we rely on public CBP data as

described below.

County-Sector Employment. To estimate county-level impacts, we rely on county by

2-digit SIC sector employment data from the County Business Pattern (CBP) for the period

1967-1987. We use the data provided by Eckert et al. (2020) and Eckert et al. (2022).16 Since

we use the CBP across a time period where coverage expands sharply, we limit ourselves to

county-sector cells with positive employment throughout the period 1967-1987.17 This also

limits the influence of very small county-sector cells on our estimates. Employment changes

in these cells may be unduly influenced by reporting changes, such as whether multi-unit

firms report all their employment to the location of the headquarter establishment.

6 Empirical Results

6.1 Effect of Nonattainment on Regulated Firms

We start by revisiting the effects of 1970s CAAA regulations on plant-level outcomes. Our

estimation sample consists of all plants that operate in polluting industries. We focus on the

effects on incumbent plants by dropping plants not yet active in 1963. We estimate Poisson

Pseudo-Maximum Likelihood (PPML) models of the form

yi(c,j),t = exp

(
1987∑

τ=1963,τ ̸=1967

Treatc × 1{t = τ}βτ + µi + µjt + µst

)
ϵi(c,j),t (1)

where yi(c,j),t refers to outcome y (employment, sales) of plant i in county c and industry j.

We impute yi(c,j),t = 0 for all years after the plant exits, allowing us to account for regulation

induced plant exit.

Our estimate is derived from comparing plants in initially regulated areas, Treatc = 1,

to those in unregulated areas. To ensure our control group is not differentially affected

16Eckert et al. (2022) digitize the CBP for years prior to 1974 and Eckert et al. (2020) develop a method-
ology to impute missing employment cells.

17Figure 1 in Eckert et al. (2022) shows a significant jump in the number of available observations within
this period. Most of these additional observations are insignificant in terms of their contribution to overall
employment. We obtain very similar effects in terms of size and significance when we estimate the effects of
nonattainment on the full panel.
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by other CAA regulations, we drop a small number of counties that are in nonattainment

for pollutants other than TSP, but in attainment for TSP. Given our focus on within-firm

leakage, we additionally exclude unregulated plants whose parent firm operates regulated

plants in the same industry. A primary concern with equation (1) is that regulation affects

heavily polluted areas, with higher population density and manufacturing employment. To

ensure our estimates are not driven by these differences, we include plant, industry-by-year,

state-by-year, initial size decile-by-year and initial labor productivity decile-by-year fixed

effects. Standard errors are clustered at the county-level.

Figure 1 shows results for employment and sales. Prior to the passage of the CAA,

treatment and control groups trend similarly. After the regulation, employment and sales of

regulated plants fall relative to unregulated plants. The long-run effect in 1987 amounts to

a 26% decline in employment and a 30% decline in sales.18

Next, we study whether these large relative effects reflect extensive margin adjustments

through exit or downsizing along the intensive margin. Using the same sample of incumbent

plants, we estimate a linear probability model for plant exit:

I[exitedi(c,j),t] =
∑
τ

Treatc × 1{t = τ}βτ + β0Xi,1963 + µjt + µst + ϵi(c,j),t. (2)

Intuitively, we compare exit rates between plants in regulated and unregulated areas, con-

trolling for state and industry-by-year fixed effects. One important difference between the

regression models (1) and (2) is that it is not possible to control for time-invariant differences

in the propensity to exit via unit fixed effects. To address this issue, we control for plant-level

employment in 1963, Xi,1963, when all plants in our sample were active.

Figure 2 reports results of a version of the regression model (2) that adds large plant

indicator interaction term. The results show that nonattainment had no discernible effect

on exit rates for most plants, among large plants, defined as those in the top decile of

the employment distribution in 1963, nonattainment status leads to a large and significant

increase in the likelihood of exit. Nonattainment leads to a more than doubling of the relative

exit rate among these plants.

18Since we use PPML to estimate equation (1), these effects should be interpreted as percent change in
the mean and not the mean percent change (Chen and Roth, 2023).
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The persistence and size of the effects in Figures 1 and 2 suggest that nonattainment

significantly restricts plants’ growth trajectory, consistent with regulation becoming more

stringent with the passing of the 1970 and 1977 amendments to the Clean Air Act. While

we have made efforts to create a “cleaner” control group, the estimates provided here should

still be interpreted as evidence of a relative effect of nonattainment. According to the

conceptual framework laid out in Section 4, the estimated declines in employment and sales

likely overstate the effect of the policy on plants in regulated counties. This bias arises in our

context because economic activity likely reallocates towards attainment counties, violating

the stable unit treatment value assumption (SUTVA).

To study this reallocation, we test whether multi-unit firms offset declines among regu-

lated plants by increasing production at their unregulated plants. We consider a sample of

firms active in both regulated and unregulated counties, as measured by the location of their

plants prior to the policy. We use PPML to estimate the following specification

yf(j),t = exp

(
1987∑

τ=1963,τ ̸=1967

Treatf × 1{t = τ}βτ + µjt + µf

)
ϵi(c,j),t, (3)

where yf(j),t refers to the total activity of firm f across all its unregulated plants in industry

j. Activity is measured in terms of employment, sales, cost of fuels and number of plants.

Treatf ∈ (0, 1) denotes the share of pre-regulation firm-industry employment located in

eventually regulated counties. This specification isolates shifting of activity between plants

producing similar products in a given firm. Since all firms in this sample operate a regulated

plant, we test whether firms that are more strongly exposed to the regulation increase activity

among their unregulated plants.

Even if nonattainment is exogenous conditional on fixed effects, firm level exposure to

regulation at other plants may not be random in equation (3): Large firms may dispro-

portionately locate in more densely populated, regulated areas. If these firms are also on

different growth trajectories at their unregulated plants, this can create omitted variable

bias. To address this concern, we construct pseudo-exposure measures following the ap-

proach outlined in Borusyak and Hull (2023). We repeatedly randomize regulation across

counties with ex ante characteristics similar to those that were in fact regulated.19 We

19Appendix E describes the exact algorithm we use to compute counterfactual regulation assignments.
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then compute firms’ pseudo-exposure as the average across these counterfactuals, interact it

with year fixed effects, and include it as a control variable. As before, we also control for

industry-year and firm fixed effects. Standard errors are clustered at the firm-level.

Figure 3 shows that exposure to regulation leads to significant increases in employment

and sales at unregulated plants. Effects on the number of plants are muted. Within firm

leakage effects for sales and total cost of fuel are shown in the panel B of Figure 3. After

regulation, both sales and fuel expenditures grow more strongly in more exposed firms.

Similar to the effects of regulation unfolding over time, these effects are highly persistent. In

1982, a 10% increase in exposure leads to a 4% increase in employment and a 7% increase

in sales.20 In Appendix Figure A1, we show robustness of these results to using a discrete

treatment variable that equals one for firms with Treatf > Median(Treat(f)).

To summarize the results, Figure 4 plots the average change in the share of firm employ-

ment, sales, number of plants and cost of fuels that is accounted for by plants in regulated

counties. The sample consists of firms that were active in both nonattainment and attain-

ment areas prior to the policy. The share of firm activity carried out in nonattainment areas

was stable between 1963 and 1972, but declines by roughly 3 percentage points after the

regulation. We have identified three drivers to this shift: declines in sales and employment

among regulated plants, exit of regulated plants, and increases in economic activity among

unregulated plants.

6.2 County-level Effects of Nonattainment Status

To study the effects of nonattainment at the county-level, we draw on recently digitized CBP

data provided by Eckert et al. (2022).21 The county-level analysis complements our plant-

level estimates in Section 6.1. By studying effects on total employment at the county by

2-digit sector level, we additionally account for effects of the policy on plant entry. An advan-

tage of the plant-level approach is that we can better account for compositional differences

between the types of plants that operate in nonattainment and attainment counties.

20We obtain these by exponentiating the event study coefficients for sales and employment and multiplying
both by 0.1.

21The CBP is an unbalanced panel at the county-sector level, but our results are robust to estimating
effects on a balanced panel of county-sectors.
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We use the following event-study specification to estimate the effects of nonattainment

on county-sector employment via PPML:

Employmentcjt = exp

 1987∑
τ=1967
τ ̸=1970

1{t = τ} × (Treatcβτ + IEcjγτ +Xcjδτ ) + µcj + µjt

 ϵcjt.

(4)

We separately estimate the effect of own exposure to regulation via Treatc as well as through

indirect exposure to regulation in other nearby counties

IEcj =
K∑
k ̸=c

D−δ
ck∑K

k′ ̸=cD
−δ
ck′

Employmentkj1970 · Treatk,

where Dck is distance between county c and k and δ is a decay parameter determining

the relative weight on counties at different distances.22 Intuitively, indirect exposure is

large if a county is located close to other regulated counties that also have a lot of em-

ployment in sector j. This approach to modeling spatial leakage is inspired by Adao,

Arkolakis, and Esposito (2019) and we follow their work in additionally controlling for

Xcj =
∑K

k ̸=c

D−δ
ck∑K

k′ ̸=c D
−δ
ck′
Employmentkj1970 to capture agglomeration or business stealing ef-

fects. Indirect exposure across counties may be subject to similar omitted variable concerns

as the within firm leakage. We therefore include a county-level pseudo-exposure measure to

control for the effect of non-random exposure. To control for differences between attainment

and nonattainment counties, we also add county-sector, as well as sector, state and the in-

teraction of (log) initial population with year fixed effects. We cluster our standard errors at

the state-level since the indirect exposure variable may induce spatial correlation in residuals

across counties.

Figure 5 plots the county-level effects of nonattainment β̂τ on polluting industry employ-

ment (SIC codes 24, 26, 32 and 33). By 1987, employment declines by 25.2% relative to

attainment counties, in line with effects estimated at the plant-level. Figure 6 presents our

estimates for spatial leakage γ̂τ for a spatial decay of δ = 5, following the baseline value used

by Adao, Arkolakis, and Esposito (2019). Counties more heavily exposed to the regulation

through their neighbouring counties see increases in employment. The estimated effects im-

ply that a county at the 75th percentile of the empirical distribution of the exposure variable

22Distances between counties are taken from the NBER County Distance Database.
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IEcj sees a 2.4% increase in employment relative to a county at the 25th percentile. Figure

A2 shows that these spatial leakage effects are robust to different values of spatial decay.

Results are robust to any δ ∈ {1, 3, 5} or using a simpler spatial weight that is equal to one

for employment within 40 miles of a given county and zero otherwise.

These county-level results complement the leakage along firm ownership networks by also

including leakage driven by intra-national trade.

6.3 Further Results

Broader Employment Effects. Consistent with prior literature, we have estimated the

effects of nonattainment by studying the response of industries labeled as polluting by Green-

stone (2002). Figure A3 shows effects of the regulation on non-polluting industries as well

as total manufacturing employment. Employment declines in non-polluting industries are

somewhat smaller than in polluting industries at around 10%, with slightly larger effects on

total manufacturing employment. These results illustrate that the effects of nonattainment

are not offset by reallocation of workers to less polluting industries. Instead, they are con-

sistent with regulation negatively affecting the entire manufacturing sector. Figure A3 also

allows us to relate our results to alternative estimators of the effects of nonattainment. In

some specifications, Greenstone (2002) relies on a triple-difference design comparing clean

and dirty industries, before and after regulation passed across attainment and nonattainment

counties. From Figure A3, we see that this type of comparison would imply smaller effects of

nonattainment since non-polluting industries decline too. We believe this comparison would

understate the effects of nonattainment because non-polluting industries remain a plausible

target for regulators. To illustrate this point, Figure A4 plots the share of Toxic Release

Inventory Plants that have a permit under a regulatory program related to the Clean Air

Act. This proxy for regulatory activity is relatively uniformly distributed across industries,

in line with Figure II in Walker (2013).

Effects on Wages. We also consider the effect of regulation on manufacturing wages.

To do so, we use decadal IPUMS census data to construct composition adjusted average

log wages at the commuting zone level.23 A commuting zone is considered treated if any

23We follow the approach in Suárez Serrato and Wingender (2014) to estimate these price indexes.
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of the counties within the commuting zone is in nonattainment (cf. Currie, Voorheis, and

Walker (2023) for a similar approach to defining treatment). Figure A5 shows no statistically

significant effect on average wages.

Effects on TSP Pollution. We provide new estimates of the effect of nonattainment on

long-run TSP pollution levels. Figure A6A shows that nonattainment decreases TSP pollu-

tion. We estimate short-run effects close to those in Isen, Rossin-Slater, and Walker (2017),

but our estimated long-run decline is roughly 50% larger. Analogous to the employment

leakage in Figure 6, Figure A6B shows our estimates of pollution leakage. Pollution leakage

are a function of two competing forces: lower pollution in regulated counties also means

less pollution can end up in neighbouring counties through atmospheric transport. On the

flip side, reallocation of economic activity increases pollution in neighbouring counties. We

find these two channels roughly offset with positive, but statistically insignificant pollution

leakage.

7 Model Quantification

7.1 Quantitative Trade Model

We now outline a model of multi-region trade and production with multi-plant firms that

matches the production activity of pollution-intensive manufacturing industries across space.

In Section 7 we implement this model empirically and show it can reproduce the reduced-

form results in Section 6. We therefore use this model to guide our interpretation of the

reduced-form difference-in-difference estimates of the Clean Air Act regulations.

7.1.1 Demand

The economy has N locations. Each location m has a representative consumer with prefer-

ences given by a Cobb-Douglas aggregator across sectors

Um =
∏
s

(csm)
αs

, where
∑
s

αs = 1,

and where the sectoral consumption

csm =

(∫
Ωs

m

qsm(ω)
η−1
η dω

) η
η−1

. (5)
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qsm(ω) is the quantity that the consumer purchases from firm ω and Ωs
m is the set of firms in

sector s selling to market m. The parameter η governs the elasticity of substitution across

varieties within each sector.

Utility maximization yields the following individual firm demand in market m

qsm(ω) = psm(ω)
−η Ism

(P s
m)

1−η
≡ psm(ω)

−ηAs
m, (6)

where

P s
m =

[∫
Ωs

m

psm(ω)
1−η

] 1
1−η

.

Given consumer expenditure Im, the sector expenditure is Ism = αsIm, and the market-

specific aggregate price is defined as Pm =
∏

s(P
s
m/α

s)α
s
. Since each sector s is separable in

terms of their consumer expenditure Ism and price index P s
m, we develop the firm production

and sales decisions abstracting from s below.

7.1.2 Production

Production Costs. Each firm ω is defined by its core efficiency ϕ and a set of locations

with active plants Z(ω). Production has constant return-to-scale technology with a single

input of labor. Firm ω delivers their goods to market m with a continuum of shipments

that add up to qm(ω).
24 For each shipment, there is an IID random productivity draw νl

associated with the plant at location l ∈ Z(ω). The distribution of νl is assumed to be

Fréchet, such that

Pr(νl ≤ x) = exp(−(ϕTl)
θ(x)−θ).

These assumptions imply that the cost distribution of sourcing from each location l is also

Fréchet.

Pr

(
wlτlm
νl

≤ c

)
= 1− exp

((
wlτlm
ϕTl

)−θ

cθ

)
.

The firm ω chooses to ship the product to market m from its lowest cost location l ∈ Z(ω)

for each shipment. The distribution of minimal costs of shipping to market m is then given

24Without loss of generality, we can assume the shipment j ∈ [0, 1] such that qm(ω) =
∫ 1

0
qm(ω, j)dj. The

quantity of shipment is pre-determined and does not respond to productivity shocks.
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by

Gm(c|ϕ, Z(ω)) = 1− exp

−

 ∑
l∈Z(ω)

wlτlm
ϕTl

−θ

cθ

 .

Finally, the expected cost of serving market m for firm ω takes the form

cm(ϕ, Z(ω)) =

[∫ ∞

0

c dGm(ϕ, Z(ω))

]
= Γ

(
θ + 1

θ

)
︸ ︷︷ ︸

Γθ

 ∑
l∈Z(ω)

(
wlτlm
ϕTl

)−θ
− 1

θ

. (7)

Each firm commits to a price pm(ω) based on their expected cost of sales to market m. Firms

are monopolistic competitive and take Pm as given.

Profit Maximization. Given the assumption of monopolistic competition in each product

market, each firm sets a constant markup of η
η−1

for all its products. Firm ω’s price for market

m is then

pm(ϕ, Z(ω)) =

(
η

η − 1

)
cm(ϕ, Z(ω)) =

(
η

η − 1

)
Γθ

 ∑
l∈Z(ω)

(
wlτlm
ϕTl

)−θ
− 1

θ

. (8)

Each firm has sales at market m of

sm(ϕ, Z(ω)) =
Im

P 1−η
m︸ ︷︷ ︸
Am

pm(ϕ, Z(ω))
1−η. (9)

The model also characterizes the share of sales to market m that are sourced from l ∈ Z(ω) :

µlm(ϕ, Z(ω)) =
(wlτlm)

−θT θ
l∑

k∈Z(ω)(wkτkm)−θT θ
k

. (10)

As a result the total shipments from a firm’s plants in location l ∈ Z(ω) are given by

rl(ϕ, Z(ω)) =
∑
m

sm(ϕ, Z(ω))× µlm(ϕ, Z(ω)).

Entry. We assume each location l has a fixed mass El of potential firms. Their productivity

distribution is Fϕ and common across locations. Each potential firm ω incurs idiosyncratic

random fixed cost fl(ω) to establish a new plant at location l.
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Firms choose the optimal combination of locations Z to maximize profits as follows

π(ϕ, ω) = max
Z∈Z

1

η

∑
m

sm(ϕ, Z(ω))−
∑

l∈Z(ω)

fl(ω), (11)

where Z(ω) can potentially be an empty set, i.e., the firm does not operate.

7.1.3 Equilibrium

Given wl, Im, Tl, τlm, El, Fϕ, ∀m, l = 1, ..., N , the equilibrium is a vector of price indexes

Pm, allocations for the representative consumer qm(ω), firm prices pm(ϕ, Z(ω)) for each

m = 1, ..., N and their location choices Z(ϕ, ω) for each l = 1, ..., N such that

1. Equation (6) solves the consumer’s optimization problem;

2. Pm satisfies equation (7);

3. and pm(ϕ, Z(ω)) and Z(ϕ, ω) solve the firm’s profit maximization problem.25

As we show in Section 7, this model is rich enough to capture important geographic

patterns in the US economy. After calibrating the model, we show that we can implement

the regulation in our model by imposing nonattainment status on a large number of local

areas. Doing so allows us to find the implied costs of the regulation that rationalize the

decline of employment in nonattainment regions relative to attainment regions. As we show

in Section 8, while some of the intuitions from our simpler model continue to hold, the

economic realism of the quantitative model yields a more precise quantitative account of the

economic costs of the regulation in both attainment and nonattainment areas.

This section implements the quantitative model from Section 7.1 by targeting the eco-

nomic equilibrium prior to the implementation of the CAAA. We first describe a simplifying

procedure to solve the multi-unit firm location problem for a large number of local markets.

Second, we describe how we parameterize trade costs and the distributions of productiv-

ity and fixed costs. We then discuss how we calibrate key parameters using the simulated

method of moments. Finally, we show that the model provides a realistic approximation

of the geographic distribution of economic activity among regulated industries prior to the

implementation of the CAAA.

25Since we are interested in the response of a subset of manufacturing industries to environmental regula-
tions, we define an industry equilibrium where wages in each location are taken as given.
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7.2 Simplifying the Multi-Unit Firm Location Problem

Given the local and place-based nature of nonattainment areas, a key goal of our analysis is to

model a large number of locations that correspond to attainment and nonattainment areas.

In practice, we use the 1990 definition of Commuting Zones (CZs) and simulate 722 CZs,

excluding CZs in Alaska and Hawaii. In this setting, the number of location combinations

that firms may choose from is a staggering 2722.26

A factor that complicates solving this large combinatorial choice problem is the fact that,

in theory, the location decisions of different plants in a firm can be interconnected. To see

this, write the total payoff of the firm with core productivity ϕ and operating locations Z as

π(ϕ, Z) =
1

η

(
η

η − 1
Γθ

)1−η

ϕη−1
∑
m

Am

(∑
l∈Z

(
τlm
Tl

)−θ
)− 1

θ

1−η

−
∑
l∈Z

fl

≡ η̃θ(ϕ)
η−1
∑
m

Am

(∑
l∈Z

(
τlm
Tl

)−θ
)− 1

θ

1−η

−
∑
l∈Z

fl, (12)

where η̃θ = η−η

(η−1)1−η (Γθ)
1−η. It is clear from the payoff function that more productive firms

have larger payoffs. In addition, more productive firms also operate in more locations, on

average. However, the choice of locations Z depends on the set of trade costs τlm and is a

combinatorial problem that is burdensome to solve.

To make this location choice problem computationally tractable, we assume firms pick

their plant configuration Z by solving a two-tier location choice problem. In the first stage,

firms choose the best potential production location within each state according to the sourc-

ing potential of commuting zone l, given by
∑

mAm

(
τlm
Tl

)−θ

− fm. This sourcing potential

reflects the profit a single-plant firm would make from choosing that commuting zone. In

the second stage, firms solve the combinatorial plant location choice problem by choosing

the set of states where they produce based on the potential payoff of producing in each state

as determined in stage one. This second stage fully takes into account potential cannibal-

ization effects that arise if firms locate plants in neighboring states. The solution to this

simplified choice problem deviates from the solution to the combinatorial problem across

all 722 commuting zones by limiting firms to one plant per state and introducing a simple

26Note that 2722 is more than 220 quadrillion times larger than a googol squared.
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heuristic where to locate that plant within state. The benefit of this heuristic approach is

that it allows us to examine the effects of the Clean Air Act at a detailed geographic level

while maintaining key aspects of the location decisions faced by large, multi-plant firms.

Iterative Algorithm. We implement this decision rule using the following algorithm.

1. Take an initial guess of Am;

2. For each firm ϕ

(a) and for each state s, find the most attractive location maxl∈s
∑

mAm

(
τlm
Tl

)−θ

−fl.

Denote the set of most attractive locations as N∗.

(b) find the optimal combination of locations Z across l ∈ N∗ by solving (11).

3. For a firm with productivity ϕ at l, its expected cost of selling to market m is

cm(ϕ, l) = Γθ(ϕ)
−1 ×

 ∑
k∈Z(ϕ,l)

(
τkm
Tk

)−θ
− 1

θ

if the firm is active in any locations. The firm sets the price in market m as

pm(ϕ, l) =
η

η − 1
cm(ϕ, l).

4. We can then update the price index Pm as

P 1−η
m =

∑
l

El

∫
ϕ

pm(ϕ, l)
1−ηf(ϕ)dϕ.

5. Iterate until Am converges.

In practice, this algorithm solves the equilibrium of the model including the location

decisions of multi-unit firms in a computationally tractable way.

7.3 Parameterization and Estimation

We implement the model in four steps. First, we take expenditure shares directly from the

data. Second, we assign the elasticities of substitution across varieties and within the firm
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to values commonly used in the literature. Third, we set trade costs to values implied by

estimated gravity models in the literature. Finally, we parameterize the distributions of

fixed costs and productivity and we estimate these parameters using the simulated method

of moments.

Step 1: Expenditure Shares. We assume that the mass of potential firms in each

location, El, is proportional to the number of establishment in each location.27 In the absence

of granular commuting zone-level spending data, we impute Im by combining county-level

personal income from the BEA with the state-level spending on the four polluting sectors

from the Commodity Flow Survey. Letting s be state and c county, we compute

Im =
∑
c∈m

Incomec∑
c∈s Incomec

Is,

where Is is state-level spending from the Commodity Flow Survey and Incomec is county-

level income from the BEA.28 Both spending and county-level income are for the year 2002,

which is the earliest year the state-to-state CFS is available at the industry-level.

Step 2: Elasticities of Substitution. We set the elasticity of substitution across varieties

to η = 4, in line with consensus estimates from the gravity literature (Head and Mayer, 2014).

To calibrate the shape parameter of the Fréchet distribution for plant productivity draws, we

rely on estimates from prior literature literature and pick a value of θ = 8. Tintelnot (2017)

uses θ = 7 because it lies within the range of productivity dispersion estimates reported

in Eaton and Kortum (2002). Head and Mayer (2019) estimate θ = 7.7 based on sourcing

decisions of multinational car manufacturers.

Step 3: Trade Costs. Trade costs, τlm, depend on distance dlm through τlm = (dlm/dnorm)
βτ

for dlm > dnorm; distances below dnorm incur no trade cost. The normalization distance,

dnorm, is set at 50 miles to align with the observed level of out-of-state trade, where 67% of

consumption originates from producers located outside the state. We use a value of βτ that

27Given the low share of multi-unit firms, the spatial distribution of the number of firms and the number
of establishments are highly correlated.

28While commuting zones sometimes cut across state borders, counties are nested within both commuting
zones and states.
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Table 1: Summary of Parameters

Parameter Functional Form Value Source

Demand elasticity η = 4
Product cost distribution Fréchet θ = 8

Trade cost τlm = distβτ

lm βτ = 0.375 CFS Data

Fixed cost at home fl(ω)
iid∼ logN(µf0 , σf ) µf0 = −4.0 ∼ 10% of sales

Firm productivity ϕ
iid∼ logN(0, σϕ) 0.645 MU sales share

Fixed cost at away fl′(ω)
iid∼ logN(µf1 , σf ) (1.99, 1.01) MU share/#Plants

is consistent with estimates of gravity models in the literature. Disdier and Head (2008)

report that the elasticity of trade relative to distance, based on 103 papers, ranges from 0.04

to -2.33. Because the industries we study are relatively heavier, we select a trade elasticity

in the upper range of -1.5, which in our model implies a value of βτ = 0.375 across CZs.

Step 4: Estimation of Fixed Costs and Productivity Distributions. We assume

that firms’ core efficiency is log-normally distributed ϕ ∼ LogN(0, σϕ). Similarly, we model

the fixed costs of entry in domestic and other locations by assuming that fl ∼ LogN(µf0 , σf )

and fl′ ∼ LogN(µf1 , σf ), where µf0 < µf1 . Because our model is static, it is unable to

separately identify entry costs for home and other locations. We therefore set µf0 = 4.0,

such that the mean fixed cost share of sales is 5% among plants in home locations.

We use the simulated methods of moment to estimate the firm productivity disper-

sion (σϕ) and fixed costs parameters (µf1 , σf ). We denote the parameter vector as ψ ≡

{σϕ, µf1 , σf}. For a candidate value of ψ, we simulate the model and compute the following

moments: (1) share of multi-unit firms; (2) average number of plants per multi-unit firm;

and (3) Share of sales from multi-unit firms. Our estimate of ψ minimizes the criterion func-

tion [md −m(ψ)]′W [md −m(ψ)], where md are the data moments, m(ψ) are the simulated

model moments, and W is the weighting matrix. Panel B of Table 1 shows the estimated

parameters. The implied mean and median share of fixed cost to sales for plants in non-home

locations are 12.3% and 12.9%, respectively.
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Table 2: Moments in Data and Model

Moment Data Model

Share of multi-unit(MU) firms 0.055 0.056
Average number of plants per MU 3.72 3.72
Share of production from MU 0.785 0.788

Note: Data is for manufacturing firms in 1963 from Dunne, Roberts, and Samuelson (1988).

Model Fit. Table 2 shows that the model successfully matches the data moments. To

further check if the model captures the geographical features accurately, we compare the

spatial distribution of sales in the data and model. Figure 8 shows the maps of production in

the data and the model. The correlation between the model-simulated and actual production

is 74.8%. The model shows a slightly less geographical concentrated pattern of production

compared to the data. This discrepancy may arise because the model assumes uniform local

productivity across all locations. A model that also calibrates local productivities would

perfectly match the model’s production distribution with the observed spatial data.

8 Quantifying the Economic Effects of Environmental

Regulations

We now use our estimated model to simulate the distribution of economic activity before and

after the introduction of the CAAA. We assume that the regulation imposes a productivity

discount on regulated locations, resulting in their productivity being adjusted to βTTl, where

βT < 1. Figure 7 displays a map marking regulated and unregulated areas at the commuting

zone level. For a given value of βT , we solve the equilibrium before and after the regulation

and replicate the empirical analyses from Section 6 using data generated by the model. We

then solve for the value of βT such that the model-implied difference-in-difference estimates

match the plant-level direct effect of regulation estimated in Section 6.

Panel A of Table 3 compares the estimated reduced-form results with the model-implied

values using a value of βT = 0.95. Column (3) shows that the location-level effects of

nonattainment on sales is -36%, with a standard error of 7%.29 While this estimate is

29Through the lens of our model, employment and sales only differ by constant that is unaffected by
regulation.
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larger than the estimated direct spatial effect, it falls within the confidence interval of the

empirical counterpart. Through the lens of the model, the entry margin is responsible for

the difference between the plant-level and the spatial direct effect of regulation. Regulated

areas see a decline in entry, amplifying the effect of regulation beyond what is implied by

effects on incumbent plants.

We can assess the empirical performance of our model by comparing model-implied to

empirically estimated leakage and within firm reallocation effects. These empirical moments

were left untargeted in our calibration strategy. The first column shows that the model qual-

itatively replicates, but quantitatively understates the within firm reallocation of economic

activity from regulated to unregulated areas (-1.4% versus -2.9% in the data). Turning to

leakage effects, we implement our empirical strategy of estimating within firm leakage effects

in the model and find the model closely replicates the data. Why can our model successfully

replicate this untargeted moment? As shown in section 4.1, the within-firm leakage depends

on the difference between within (θ) and across firm substitution (η − 1). We use standard

values from the literature for these parameters and find the implied leakage closely matches

the data. Consistent with the theory, we have also solved the model for θ = η − 1, and find

zero within firm leakage effects in that case.

Turning to spatial leakage, we construct the indirect exposure to regulation for each

location as in our empirical analysis, setting δ = 1.5 to align with the value used in the

model. The estimated effects imply that a location at the 75th percentile of the exposure

distribution experiences a 1.8% increases in output compared to a location at the 25th

percentile. The empirically estimated leakage is substantially larger at 9.1%.30 In on-going

work, we are investigating whether a model with differential productivity prior to regulation

better matches these leakage estimates.

Decomposing Difference-in-Differences Estimates. As discussed in Section 4, coeffi-

cients from difference-in-differences models reflect a relative effect between the treated and

control groups. Our model allows us to decompose this coefficient into the specific effects on

regulated locations and unregulated locations. The decomposition shows a 19.9% decrease

30To align our empirical analysis with geography in the model, the estimates reported in Table 3 are
estimated by aggregating the CBP data to the commuting zone by sector level.
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Table 3: Difference-in-Difference Estimates in Data and Model

With-in Firm Direct Effect leakage Effect
Reallocation Plant Spatial Firm Spatial

A. Data vs. Model
Empirical -0.0292 -0.3517 -0.2901 0.5382 0.0911

(0.0026) (0.0717) (0.0529) (0.2064) (.0457)

Model -0.0143 -0.2609 -0.3751 0.5332 0.0179
(0.0016) (0.00141) (0.0126) (0.0876) (0.00981)

B. Decomposition
Change in Treated -0.2146 -0.1991
Change in Control 0.0464 0.1760

Notes: The coefficients on the spatial leakage effect equal the actual coefficient from the regression multiplied
by the interquartile range of the indirect exposure variable.

in sales for regulated locations, accounting for 55% of the estimated effect, and a 17.6%

increase in sales for unregulated locations, representing 45% of the estimated effect. We can

apply the same decomposition to plant-level direct effect coefficients, with the results pre-

sented in Panel B of Table 3. Consistent with the insights from Section 4.1, we find that the

estimated difference-in-differences coefficients overstate the negative impacts on economic

activity in nonattainment areas. At the same time, these results show that attainment areas

see economic benefits from the regulation.

Multi-Unit Firms and the Effects of Regulation. Our model allows us to more pre-

cisely quantify the role of within firm leakage for the reallocation of production to unregulated

areas. Column 1 of Table 4 shows these partially regulated firms have a much higher sales

share at baseline. Larger firms are mechanically more likely to be exposed to the regulation

through their larger plant network, explaining this discrepancy. Beyond their larger size

prior to regulation, unregulated plants of regulated firms are also significantly more sensitive

to regulation than those part of entirely unregulated firms (column 2). The extensive mar-

gin is especially important for these differences, as illustrated by columns 3 and 4. Overall,

these results suggest that incorporating multi-unit firms substantially affects the amount of

reallocation to unregulated regions. In line with this discussion, a calibrated version of our
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Table 4: Effects of Regulation on Plants in Unregulated Areas

Sales Share Changes in Sales Intensive Extensive

Unregulated Firms 23% 6% 98% 2%
Regulated MU Firms 77% 23% 38% 62%

model with θ = η − 1, i.e. abstracting from within firm reallocation, features substantially

smaller increases in sales among plants in unregulated areas (11 versus 18%).

Regional and Aggregate Price Changes. Through the lens of the model, price indexes

are a direct measure of the consumption costs of the regulation. Given fixed expenditure,

real consumption is determined by dividing expenditure by the market price. Model simula-

tions indicate that prices, including those in both nonattainment and attainment locations,

increase across most locations. Prices in attainment areas, where output increases, also rise

because these markets source from other regulated locations that have experienced a pro-

ductivity loss. While most locations experience price increases, 52 out of 722 locations in

our model see a decline in prices. This decline is driven by increases in the production of

the home or adjacent locations, which saves on trade costs.

Figure 9 plots the percentage changes in prices for each CZ. The West Coast and Mid-

Atlantic regions experience the largest increases in prices, whereas the central areas of the

country face smaller losses or even experience price declines. The aggregate output loss

across the entire economy is 1.3%. This number is derived under the assumption of uni-

formly distributed local productivity. If regulation disproportionately affects locations with

higher productivity, the output loss could be more significant.

Environmental Regulation and the Decline in Regional Concentration. Be-

tween 1967 and 1987, the geographical concentration of manufacturing falls significantly.

Columns 1 and 2 of Table 5 shows that for both clean and dirty sectors, the regional con-

centration of employment, as measured by declines in the standard deviation of employment

shares across commuting zones. The share of employment accounted for by 5% and 10%

largest commuting zones falls by a similar amount in percent terms. Notably, these declines
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Table 5: Percent Decline from 1967 to 1987

Dirty Industry Clean Industry Model

Std across CZs -26% -13% -4.1%
Top 5% CZ share -23% -12% -3.6%
Top 10% CZ share -17% -9% -2.8%

The table shows percent declines in different measures of geo-
graphic concentration across commuting zones (CZ). “Dirty In-
dustry” refers to four polluting sectors considered in our empir-
ical analysis. “Clean Industry” refers to the remaining manu-
facturing industries. “Model” indicates the predicted decline in
induced by the regulation counterfactual where we impose a 5%
productivity decline in regulated areas.

are more pronounced in dirty than in clean industries. Column 3 shows that the model

predicts roughly 1/6 of the overall decline in concentration in polluting industries or roughly

1/3 of the relative decline. The latter may be a more appropriate quantification of the ef-

fects of regulation because it nets out common forces affecting the decline in concentration

as measured from changes in clean industries.31 Why can regulation lead to a decline in

regional concentration? The Clean Air Act targets more densely populated areas that are

hubs of manufacturing activity. By reallocating activity towards less urban areas, regulation

reduces geographic concentration.

These effects also speak to the pollution haven effect whereby environmental regulation

co-determines the geography of production in pollution intensive industries (Cherniwchan,

Copeland, and Taylor, 2017). Prior to regulation, manufacturing activity was centered

around population centers. By increasing the cost of pollution in these areas, the Clean

Air Act shifts the comparative advantage in pollution intensive production towards more

rural regions.

9 Conclusion

Environmental regulations that target regions can create substantial reallocation through

both market and within-firm leakage. This paper improves our understanding of the mag-

31Clean industries may also be affected by regulation, but Figure A3 shows these effects are substantially
smaller than for polluting industries.
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nitude of these leakage effects by providing new empirical evidence on the effects of the

CAAA. Using confidential data from the Census Bureau, we provide new results highlight-

ing the importance of considering reallocation along firm ownership networks. Additionally,

these results show that the CAAA had prolonged and growing effects on regulated firms, sur-

passing estimated effects in previous studies. In particular, entry and multi-unit adjustments

play key role in long-run responses. Using newly-harmonized data on local economic activity,

we also provide new evidence of leakage effects across counties and commuting zones.

To interpret these new empirical results and to quantify the direct, indirect, and aggre-

gate effects of the CAAA, we build a spatial equilibrium model with intra-national trade and

multi-plant location choice. The model shows that simple difference-in-differences compar-

isons exaggerate the negative effects of regulations, since both regulated and non-regulated

regions are affected in equilibrium. On net, we find that slightly more half of the estimated

effects on local markets are driven by declines in the output of regulated regions, with the

rest being due due to increases in the output of non-regulated regions. Finally, we find that,

while most regions see a consumption cost from the regulations, these costs are dispersed

across locations depending on whether a given location is regulated as well as the regulation

status of neighboring regions. Overall, we find that the consumption cost of the CAAA was

on the order of 1.3% of consumption. By providing a more detailed quantification of the

geographic distribution of the costs of environmental regulations, our model moves us one

step closer to evaluating the welfare costs of placed-based regulations across the US.
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Suárez Serrato, Juan Carlos and Philippe Wingender. 2014. “Estimating the Incidence of Government
Spending.” Mimeo.

Tintelnot, Felix. 2017. “Global production with export platforms.” The Quarterly Journal of Economics
132 (1):157–209.

Walker, W Reed. 2013. “The transitional costs of sectoral reallocation: Evidence from the clean air act and
the workforce.” The Quarterly journal of economics 128 (4):1787–1835.

37

https://www.sciencedirect.com/science/article/pii/S0167629614001520
https://www.sciencedirect.com/science/article/pii/S0167629614001520
https://ideas.repec.org/p/cen/wpaper/23-27.html


Figure 1: Direct Effects of Nonattainment on Plant Outcomes
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Notes: Figure 1 displays dynamic DD estimates and 95% confidence intervals describing the effect of NAA
on employment and sales. Standard errors are clustered at the county level. Source: Authors’ calculations
based on CM, LBD and EPA Greenbook.
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Figure 2: Effect of Nonattainment on Plant Exit
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Notes: Figure 2 displays dynamic DD estimates and 95% confidence intervals describing the effect of NAA
on probability of exit. Standard errors are clustered at the county level. Source: Authors’ calculations based
on CM, LBD and EPA Greenbook.
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Figure 3: Within Firm leakage Effects

(A) Within Firm leakage: Plants, Employment
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(B) Within Firm leakage: Sales, Fuel Cost
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Notes: Panel (A) of Figure 3 displays Dynamic DD estimates and 95% confidence intervals describing the
within firm leakage effect of the nonattainment standards. Standard errors are clustered at the firm level.
Panel (A) displays within firm leakage effects for number of plants and employment while Panel (B), shows
leakage of Sales and Fuel Cost. Source: Authors’ calculations based on CM, LBD and EPA data.
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Figure 4: Share of Firm Activity in Nonattainment Counties
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Notes: Figure 4 displays dynamic DD estimates and 95% confidence intervals describing the effect of NAA
on probability of exit. Standard errors are clustered at the county level. Source: Authors’ calculations based
on CM, LBD and EPA Greenbook.
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Figure 5: Share of Firm Activity in Nonattainment Counties
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Notes: Figure 5 displays dynamic DD estimates and 95% confidence intervals describing the effect of NAA
on county-level employment. Standard errors are clustered at the county level. Source: Authors’ calculations
based on CBP and EPA Greenbook.
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Figure 6: Spatial leakage Effects of Nonattainment
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Notes: Figure 6 displays dynamic DD estimates and 95% confidence intervals describing the spatial leakage
effect of NAA. Standard errors are clustered at the county level. Source: Authors’ calculations based on
CBP and EPA Greenbook.
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Figure 7: Map of Regulation at the Commuting Zone Level
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Unregulated, N: 536

Commuting Zones Regulated for PM

Notes: Figure 7 displays a map of the regulated and unregulated commuting zones.
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Figure 8: Spatial Distribution of Production in Data and Model
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Notes: Figure 8 displays the spatial distribution of production (sales) in data and model. Sales data is
constructed using employment data from the CBP and wage data from the IPUMS Census. In the model,
sales are proportional to labor costs, which equal employment multiplied by wage. We then normalize the
sales so that total sales equal total expenditure across all locations. Expenditure is normalized so that the
average expenditure at the commuting zone level equals 10.
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Figure 9: Spatial Distribution of Model-Simulated Price Changes
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Notes: Figure 9 displays the spatial distribution of percentage price changes as simulated in the model.

46



Online Appendix: Not for Publication

This appendix includes several sections of supplemental information. Appendix A presents definitions
of all the variables used in the paper. Appendix B presents additional background details of the CAAA and
nonattainment status.

A Variable Definitions

Variable Name Description
National Ambient Air Quality Stan-
dards (NAAQS)

Identifies Nonattainment Areas (NAA) as counties exceeding
NAAQS pollution levels for total suspended particulates.

Exit Binary indicator for plant activity in year t, equal to 1 if the plant
has exited, otherwise equal to 0. Source: Census of Manufactures,
Longitudinal Business Database.

Xi Control variables including distance measures and employment for
county i’s.

Wages Average manufacturing wages adjusted for demographics and in-
dustry affiliation for commuting zone c at time t. Source: Census
of Manufactures, Longitudinal Business Database.

Labor Productivity log of total employment divided by total value of shipments Source:
Census of Manufactures, Longitudinal Business Database.

Energy Efficiency log of total energy expenditure divided by total value of shipments.
Source: Census of Manufactures, Longitudinal Business Database.

B CAAA History and Details

In this appendix we explore the history of the Clean Air Act and provide additional details on its implemen-
tation.

Clean Air Act was originally passed in 1963 and the Air Quality Act was passed in 1967. This federal
legislation was designed to help develop technologically feasible emission standards. By 1969, these were
largely viewed as “nearly a complete failure” Melnick (1983). Political support for improved federal regula-
tions surged following the well-publisized Cuyahoga river fire and the subsequent Earth Day demonstrations
on April 22. This led to President Nixon, despite his anti-regulatory tendencies, drafting the Clean Air Act
and the creation of the EPA. Democrats, particularly Senator Edmund Muskie from Maine, had long been
pushing for more stringent regulations and played a major role in shaping the final legislation. The Act
was passed by the House of Representatives by a vote of 374-1 on June 10, 1970. It passed the Senate 73-0
on September 22, 1970. The senate version was more stringent than the house version and the final bill
incorporated much of Senator Muskie’s previous written regulation. Muskie and Nixon were political rivals
and Muskie accused Nixon of hopping on the environmental bandwagon. The bill was signed into law on
December 31, 1970.

As part of the 1970 CAAA, States were required to submit State Implementation Plans (SIPS) by 1972
that would allow them to achieve attainment standards by 1975. EPA had the right to reject SIPS proposed
by states. Extensions for achieving these standards were granted for some states until 1977.

In the 1977 amendments to the Clean Air Act, important provisions were introduced to regulate emis-
sions from new stationary sources in both Attainment and Nonattainment areas. Under these amendments,
new facilities in Attainment areas were required to incorporate ’best available control technology’ to mitigate
emissions. In Nonattainment areas, not only were new sources of emissions affected, but also modifications
to existing sources. In nonattainment areas, new or modified sources were obligated to achieve the ’lowest
available emissions rate’ and were further mandated to secure emission offsets to compensate for any addi-
tional emissions they generated. Industries varied in how they were required to comply with the LAER. Any
plant burning coal in nonattainment area had to achieve percentage reduction of sulfur in fuel. This was
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1963 Apr 1970 Dec 1970 1972 1977

Original CAA Passes
Set Broad Goals

No Specific Targets
No Enforcement
Mechanisms

“Total Failure” Earth Day
Demonstrations

CAA Amendments Passed
Signed into law by President Nixon

SIP Implementation
Deadline

1977 CAA
Amendments Pass
LAER, PSD, NSR

Formalized

-NAAQS Established
- EPA, States Given

Enforcement Mechanisms
-Required States

to Develop
State Implementation Plans

Deadline for
NA Designation

Formalized and
Strengthened

CAAA Rules and
Enforcement Mechanisms

commonly done through fuel switching to coal with lower sulfur content. In addition to fuel switching, plants
were required to install new abatement capital including scrubbers, electrostatic precipitators and cyclone
separators to remove particles from exhaust gases. The 1977 amendments also clarified the enforcement
powers of the EPA allowing for civil penalties, non-compliance penalties and construction bans for failure to
meet attainment standards. It made noncompliance penalties mandatory for industrial sources that failed
to comply with the regulations.
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C Derivations Two-Region Model

Derivation Results 1 and 2. Specializing the formula for plant-level revenue to the special case of two
symmetric regions, we have that sales for single unit firms are equal to

rSU
j =

(
Γθ

η

η − 1

)1−η

(P η−1
j + τ1−ηP η−1

j′ )(ϕTj)
η−1.

Deflating by the price and deflating by productivity ϕTj to go from quantity to input requirement shows that
labor demand is proportional to revenue. Log-linearizing, this expression around a symmetric equilibrium
gives the result. Summing across destination markets, total sales of a MU plant in j are

rMU
j =

(
Γθ

η

η − 1

)1−η

ϕη−1

(
T θ
j

(T θ
j + τ−θT θ

j′)
θ+1−η

θ

P η−1
j +

τ−θT θ
j

(τ−θT θ
j + T θ

j′)
θ+1−η

θ

P η−1
j′

)
.

Sales and labor demand continue to be proportional by the logic pointed out in footnote 8 in Tintelnot
(2017): Plants in the model can be thought of as setting a price equal to the mark-up η

η−1 over marginal
costs. This ensures labor demand and sales continue to be proportionally constant. Log-linearizing this
expression gives

d log rMU
j =

1(
T θ
j

(T θ
j +τ−θT θ

j′ )
θ+1−η

θ

P η−1
j +

τ−θT θ
j

(τ−θT θ
j +T θ

j′ )
θ+1−η

θ

P η−1
j′

)

×

[
(η − 1)

(
T θ
j

(T θ
j + τ−θT θ

j′)
θ+1−η

θ

P η−1
j d lnPj +

τ−θT θ
j

(τ−θT θ
j + T θ

j′)
θ+1−η

θ

P η−1
j′ d lnPj′

)

+
θT θ

j (T
θ
j + τ−θT θ

j′)
θ+1−η

θ P η−1
j + (η − 1− θ)(T θ

j + τ−θT θ
j′)

θ+1−η
θ −1T θ

j T
θ
j P

η−1
j )

(T θ
j + τ−θT θ

j′)
2 θ+1−η

θ

d lnTj

+
θτ−θT θ

j (T
θ
j + τ−θT θ

j′)
θ+1−η

θ P η−1
j + (η − 1− θ)(τ−θT θ

j + T θ
j′)

θ+1−η
θ −1τ−θT θ

j τ
−θT θ

j P
η−1
j′ )

(τ−θT θ
j + T θ

j′)
2 θ+1−η

θ

d lnTj

]
.

Using Tj = Tj′ and Pj = Pj′ , the expression can be simplified to

d ln r
MUj

j = (η − 1)
1

1 + τ−θ
d lnPj + (η − 1)

τ−θ

1 + τ−θ
d lnPj′ + θd lnTj

+(η − 1− θ)

[(
1

1 + τ−θ

)2

+

(
τ−θ

1 + τ−θ

)2
]
lnTj .

Sales for plants in j′ are equal to

rMU
j′ =

(
Γθ

η

η − 1

)1−η

ϕη−1

(
τ−θT θ

j′

(T θ
j + τ−θT θ

j′)
θ+1−η

θ

P η−1
j +

T θ
j′

(τ−θT θ
j + T θ

j′)
θ+1−η

θ

P η−1
j′

)
.

Log-linearizing gives:

d ln rMU
j′ = (η − 1)

τ−θ

1 + τ−θ
d lnPj + (η − 1)

1

1 + τ−θ
d lnPj′ + (η − 1− θ)

2τ−θ

(1 + τ−θ)2
d lnTj .

Derivation Results 3 and 4.
Firm ϕ pays fixed cost f̄0 for its first plant and f̄1 for its second plant. We normalize expenditure in

both locations Ej = Ej′ = wj = w′
j = 1 - our results hold for any symmetric value. Conditional on its mode

of operation, standard arguments imply that CES-monopolistically single unit firms earn profits

πSU
j (ϕ) =

1

η

(
η

η − 1

Γθwj

Tjϕ

)1−η (
P η−1
j + P η−1

j′ τ1−η
)
− f.
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The marginal plant in j has productivity ϕ̄j defined by

πSU
j (ϕ̄j) = 0 =⇒ ϕ̄j =

(
η

η − 1
Γθ

wj

Tj

)
(ηf̄0)

1
η−1

(
P η−1
j + P η−1

j′ τ1−η
) 1

1−η

.

A firm operating with two plants earns profits

πMU (ϕ) = ϕη−1 1

η

(
η

η − 1

)1−η (
P η−1
j (cMU

j )1−η + P η−1
j′ (cMU

j′ )1−η)
)
− (f̄0 + f̄1).

The marginal MU firm has productivity ¯̄ϕj defined by

πMU ( ¯̄ϕj) = πSU ( ¯̄ϕj)

which can be solved for as

¯̄ϕj =
η

η − 1
(ηf̄1)

1
η−1

(
P η−1
j

(
(cMU

j )1−η − (cSU
j )1−η

)
+ P η−1

j′

(
(cMU

j′ )1−η − (τcSU
j )1−η

)) 1
1−η

.

Log-linearized equilibrium

In a symmetric equilibrium, the log-linearized cutsoffs can be expressed as

d ln ϕ̄j = −d lnTj − ωSUd lnPj − (1− ωSU )d lnPj′

and
d ln ϕ̄j′ = −(1− ωSU )d lnPj − ωSUd lnPj′

where ωSU = 1
1+τ1−η > 1

2 is share of total sales to home market for a single unit firm. To derive the cutoff
for MU firms, the log-linearized cost functions are

d ln cMU
j = − 1

1 + τ−θ
d lnTj .

We also have have d ln cMU
j + d ln cMU

j′ = −d lnTj . The effect of a productivity shock on production cost for
single unit firms in j is

d ln cSU
j = −d lnTj .

Putting these results together, we have

d ln ¯̄ϕj = −∆d lnPj − (1−∆)d lnPj′

+
(1 + τ1−η)− (1 + τ−θ)−

1−η
θ

(1 + τ−θ)
− 1−η

θ − 1 + (1 + τ−θ)
− 1−η

θ − τ1−η︸ ︷︷ ︸
>0 ⇐⇒ η−1<θ

d lnTj

and

d ln ¯̄ϕj′ = −(1−∆)d lnPj −∆d lnPj′

− (1 + τ−θ)−
1−η
θ

(1 + τ−θ)
− 1−η

θ − 1 + (1 + τ−θ)
− 1−η

θ − τ1−η
d lnTj

The difference between d ln ¯̄ϕj and d ln ¯̄ϕj′ reflects fact that for firms with a plant in j′, the productivity
of single plant status is not directly affected by d lnTj , hence the increase in productivity in j makes MU
status in j′ unambiguously more attractive. For firms in j the partial effect is ambiguous. If the elasticity
of substitution within plants is larger across plants, then a productivity improvement in j makes having a
second plant in j′ relatively less valuable because in that case profits of MU firms are relatively less sensitive
to productivity in j.
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Log-linearizing around a symmetric equilibrium we get

d ln ¯̄ϕj = −
(
(cMU

j )1−η − (cSU
j )1−η

)
d lnPj +

(
(cMU

j′ )1−η − (τcSU
j )1−η

)
d lnPj′

(cMU
j )1−η − (cSU

j )1−η + (cMU
j′ )1−η − (τcSU

j )1−η

+
(cMU

j )1−ηd ln cMU
j − (cSU

j )1−ηd ln cSU
j

(cMU
j )1−η − (cSU

j )1−η + (cMU
j′ )1−η − (τcSU

j )1−η

+
(cMU

j′ )1−ηd ln cMU
j′ − (τcSU

j )1−ηd ln cSU
j

(cMU
j )1−η − (cSU

j )1−η + (cMU
j′ )1−η − (τcSU

j )1−η

In a symmetric equilibrium we can use
cSU
j

cMU
j

= 1

(1+τ−θ)−
1
θ
to define

∆ =
(cMU

j )1−η − (cSU
j )1−η

(cMU
j )1−η − (cSU

j )1−η + (cMU
j′ )1−η − (τcSU

j )1−η

=

(
1 + τ−θ

)− 1−η
θ − 1

(1 + τ−θ)
− 1−η

θ − 1 + (1 + τ−θ)
− 1−η

θ − τ1−η

as share of extra sales an SU firm realizes in j from switching to MU status (1−∆ > 1
2 is the share realized

in j′ i.e. the SU firm in j would gain disproportionately in j′ from switching to MU).
For the second part, we additionally use d ln cMU

j = −µjjd lnTj where µjj is share of sales to j accounted

for by plant in j and d ln cSU
j = −d lnTj and d ln cMU

j + d ln cMU
j′ = −d lnTj as well as cMU

j = cMU
j′

Price index. For a unit mass of potential entrants, and around a symmetric equilibrium, the log-linearized
price index is

d lnPj = −

∫ ¯̄ϕj

ϕ̄j
pj(ϕ)

1−ηdGj

P 1−η
j

+

[∫∞
¯̄ϕj

pj(ϕ)
1−ηdGj

P 1−η
j

+

∫∞
¯̄ϕj′

pj(ϕ)
1−ηdGj′

P 1−η
j

]
µjj


︸ ︷︷ ︸

SD

d lnTj

− pj(ϕ̄j)
1−η

P 1−η
j (1− η)

(dϕ̄j + τ1−ηdϕ̄j′)

+
pMU
j ( ¯̄ϕj)

1−η

(1− η)P 1−η
j

(d ¯̄ϕj + d ¯̄ϕj′)

+
pSU
j ( ¯̄ϕj)

1−η

(1− η)P 1−η
j

(d ¯̄ϕj + τ1−ηd ¯̄ϕj′)

The direct effect of a productivity change is proportional to the share of consumption produced in j
(coming from domestic SU firms, and MU firms from j and j′). The second, third and fourth row line
from net entry and net changes in MU status. Those effects are proportional to the market shares of these
“marginal” firms.
An equivalent expression for the price index in j′ is

d lnPj′ = −(1− SD)d lnTj −
pSU
j (ϕ̄)1−η

P 1−η
j (1− η)

(τ1−ηdϕ̄j + dϕ̄j′)

+
pMU
j ( ¯̄ϕj)

1−η

P 1−η
j (1− η)

(d ¯̄ϕj + d ¯̄ϕj′)

+
pSU
j ( ¯̄ϕj)

1−η

P 1−η
j (1− η)

(τ1−ηd ¯̄ϕj + d ¯̄ϕj′)
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Adding these two together, we get

d lnPj + d lnPj′ = −d lnTj −
(dϕ̄j + dϕ̄j′)

P 1−η
j (1− η)

pSU
j (ϕ̄j)

1−η(1 + τ1−η)

+
(d ¯̄ϕj + d ¯̄ϕj′)

P 1−η
j (1− η)

[
pSU ( ¯̄ϕj)

1−η(1 + τ1−η)− 2pMU ( ¯̄ϕj)
1−η
]

Defining

C =

[
pSU ( ¯̄ϕj)

1−η(1 + τ1−η)− 2pMU ( ¯̄ϕj)
1−η
]
− pSU

j (ϕ̄j)
1−η(1 + τ1−η)

P 1−η
j (1− η)

and using
dϕ̄j + dϕ̄j′ = d ¯̄ϕj + d ¯̄ϕj′ = −d lnTj − d lnPj − d lnPj′

we get
(d lnPj + d lnPj′)(1 + C) = −d lnTj(1 + C)

which also implies
dϕ̄j + dϕ̄j′ = d ¯̄ϕj + d ¯̄ϕj′ = 0.

Since the base level of these variables are the same in a symmetric equilibrium, this result obtains from the
result for log derivatives. With this result, we get the following simplification

d lnPj = −SDd lnTj

+
pj(ϕ̄j)

1−η

P 1−η
j (η − 1)

dϕ̄j(1− τ1−η)

+
pSU
j ( ¯̄ϕj)

1−η

(η − 1)P 1−η
j

d ¯̄ϕj′(1− τ1−η)

We can rewrite the log-linearized entry cutoffs

d ln ϕ̄j = −ωSUd lnTj − (2ωSU − 1)d lnPj

d ln ¯̄ϕj′ = −(1−∆)d lnPj +∆(d lnPj + d lnTj)−
(1 + τ−θ)−

1−η
θ

(1 + τ−θ)
− 1−η

θ − 1 + (1 + τ−θ)
− 1−η

θ − τ1−η
d lnTj

d ln ¯̄ϕj′ = −(1− 2∆)d lnPj − γ̃d lnTj

where γ̃ = 1

(1+τ−θ)−
1−η
θ −1+(1+τ−θ)−

1−η
θ −τ1−η

> 0 Now we can plug those into the price index to get

d lnPj = −SDd lnTj

+
ϕ̄jpj(ϕ̄j)

1−η

P 1−η
j (η − 1)

(1− τ1−η)︸ ︷︷ ︸
α(ϕ̄)

[
−ωSUd lnTj − (2ωSU − 1)d lnPj

]

+
¯̄ϕjp

SU
j ( ¯̄ϕj)

1−η

(η − 1)P 1−η
j

(1− τ1−η)︸ ︷︷ ︸
α( ¯̄ϕ)

[−(1− 2∆)d lnPj − γ̃d lnTj ]
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d lnPj (1 + α(ϕ̄)(2ωSU − 1) + α( ¯̄ϕ)(1− 2∆))︸ ︷︷ ︸
>0

= −(SD + α(ϕ̄)ωSU + α( ¯̄ϕ)γ̃)d lnTj

which gives the result d lnPj = −Λd lnTj with Λ > SD > 0 ⇐⇒ (α(ϕ̄)(2ωSU − 1) + α( ¯̄ϕ)(1 − 2∆))SD <

(α(ϕ̄)ωSU + α( ¯̄ϕ)γ̃) which holds because ωSU > (2ωSU − 1) ⇐⇒ ωSU < 1 and γ̃ > 1−∆ > 1− 2∆ which

holds under our maintained assumption of 1 + τ1−η −
(
1 + τ−θ

)− 1−η
θ ⇐⇒ θ > η − 1.

Log-linearized Equilibrium Characterized

Suppose Λ < 1 and θ > η − 1. Then a negative productivity shock d lnTj < 0 raises prices in j and j′ with

d lnPj′ = −(1− Λ)d lnTj > 0 and d lnPj = −Λd lnTj > 0

A negative productivity shock leads to exit of SU firms

d ln ϕ̄j = ωSUΛd lnTj + (1− ωSU )(1− Λ)d lnTj − d lnTj > 0

and a larger share of MU firms in j.

d ln ¯̄ϕj = ∆ΛTj + (1−∆)(1− Λ)d lnTj +
(1 + τ1−η)− (1 + τ−θ)−

1−η
θ

(1 + τ−θ)
− 1−η

θ − 1 + (1 + τ−θ)
− 1−η

θ − τ1−η
d lnTj < 0

These entry responses are offset in j′.
Derivation Result 5

Labor demand analysis In a symmetric equilibrium, labor demand in j comes from domestic SU
firms as well as domestic and foreign MU firms. Write these as

Lj =

(∫ ¯̄ϕj

ϕ̄j

l(ϕ)dGj +

∫
¯̄ϕj

l(ϕ)dGj +

∫
¯̄ϕj′

l(ϕ)dGj′

)

Letting αSU be the share of labor demand in region j coming from single unit firms, we can log-linearize
this as

d lnLj = (η − 1)d lnTj︸ ︷︷ ︸
Direct Effect

+ (η − 1)
[
αSU (ωSUd lnPj + (1− ωSU )d lnPj′) + (1− αSU )(ωMUd lnPj + (1− ωMU )d lnPj′

]︸ ︷︷ ︸
Product Market leakage>0

−g(ϕ̄j)l(ϕ̄j)

Lj
dϕ̄j︸ ︷︷ ︸

Exit<0

+
g( ¯̄ϕj)

Lj
l( ¯̄ϕj)

SUd ¯̄ϕj︸ ︷︷ ︸
Relocation<0

where αSU is the share of domestic labor demand coming from single unit firms and ωMU = 1
1+τ−θ is the

share of MU revenue stemming from sales to j. The last line uses d ¯̄ϕj = −d ln ¯̄ϕj′ and l( ¯̄ϕj)
MU = l( ¯̄ϕj′)

MU .
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Similarly we log-linearize the labor demand for j′

d lnL′
j = (1− αSU )(1− ωMU )(η − 1− θ)d lnTj︸ ︷︷ ︸

Intrafirm Leakage Effect>0

+ (η − 1)
[
αSU ((1− ωSU )d lnPj + ωSUd lnPj′) + (1− αSU )((1− ωMU )d lnPj + ωMUd lnPj′

]︸ ︷︷ ︸
Product Market leakage>0

−g(ϕ̄j)l(ϕ̄j)

Lj
dϕ̄j′︸ ︷︷ ︸

Entry>0

+
g( ¯̄ϕj′)

L′
j

(l( ¯̄ϕj′)
SU )d ¯̄ϕj′︸ ︷︷ ︸

Relocation>0

Since employment in j′ goes up unambiguously, the DiD estimator |d lnLj − d lnLj′ | overstates the
equilibrium effect of regulation.
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D Appendix Figures

Figure A1: Within Firm leakage Effects: Discrete Exposure Variable
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Figure A2: Spatial leakage: Robustness
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Figure A3: Effects of Nonattainment across Manufacturing
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Figure A4: AFS Permit Data
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Figure A5: Wage Effects of Nonattainment
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Figure A6: Pollution Effects
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E Borusyak and Hull (2023) Exposure Control

We construct counterfactual exposure measures at the firm- and county-level. We proceed as follows:

1. In the sample of monitored counties, estimate linear probability model

treatc = β0 + β1 log(pop)c + β2 log(total emp)c + ϵc

2. Obtain {x′
cβ̂, ϵ̂c}c and let Nc be the number of regulated counties

3. Counterfactual regulation: Compute score = x′
cβ̂ + ϵ̂c′ ̸=c and consider Nc counties with largest score

as (pseudo)-regulated

4. Compute IEPseudo
cj and treatPseudo

f based on counterfactual regulation measure

5. Take average across 500 permutations of ϵ̂c

6. Add as control variable to specifications (3)
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